

NATIONAL INSTITUTE FOR SPACE RESEARCH - INPE/MCT SOUTHERN REGIONAL SPACE RESEARCH CENTER – CRSPE/INPE - MCT SOUTHERN SPACE OBSERVATORY – OES/CRSPE/INPE - MCT FEDERAL UNIVERSITY OF SANTA MARIA – UFSM SPACE SCIENCE LABORATORY OF SANTA MARIA – LACESM/CT - UFSM INPE/MCT - UFSM/MEC

STATISTICAL STUDY OF CONSTRAINING PARAMETERS SPACE IN LEAST SQUARE METHOD APPLIED TO GAUSSIANS FIT TO POWER SPECTRA OF SIMULATED RADAR ECHOES OF ELECTROJET PLASMA IRREGULARITIES*

Henrique Carlotto Aveiro^{1,2}, Clezio Marcos Denardini³, Mangalathayil Ali Abdu³, Nelson Jorge Schuch¹

Ionospheric and Neutral Atmosphere Sounding Laboratory, LSIANT/CRSPE/INPE – MCT, Santa Maria - RS, Brazil;
Space Science Laboratory of Santa Maria, LACESM/CT – UFSM, Santa Maria - RS, Brazil;
Division of Aeronomy, DAE/CEA/INPE – MCT, Sao José dos Campos - SP, Brazil.
Contato: aveiro@lacesm.ufsm.br / Fax: +55 55 3220 8021

(3)

*COM2-01630-2005

ABSTRACT

The Least Square Fit Method modified by Levenberg-Marquardt is intensively used in many areas of space sciences for fittings mathematical equations to sample data. In equatorial electrojet studies based on back-scatter coherent radar data this method has been used to fit the sum of two Gaussians to the power spectra of the echoes back-scatter dfrom 3-meter plasma irregularities. This fitting is done in order to identify the Doppler velocities of the two types of plasma irregularities power spectra present in the electrojet echoes. For the present work we have simulated coherent radar echoes to generate power spectra having the characteristic of the electrojet irregularities. The simulations were made based on a priori parameters of the plasma irregularities such as group velocity and spectral width. Using this simulated data set, we have performed a statistical study of constraining the parameters space Fith Method applied to two Gaussians fit to power spectra. The variance distribution of the Gaussian parameters is presented and analyzed in terms of the penalty functions, which prevent the method to converge to a local minimum. An analysis of the variance of each parameters as function of its constraining value is also presented.

INTRODUCTION

At about 105 km of alitude in the equatorial E region and covering a latitudinal range of $\pm 3^{\circ0}$ around the dip equator flows an intense electric current named equatorial electrojet (EEI) driven by the E region dynamo [1, 2]. Studies of the equatorial ionosphere using VHF radars have shown echoes back-scattered from plasma irregularities. Type I and Type 2, also known as two-stream [3, 4] and gradient drift [5], respectively. They have been studied in order to explain the phenomenology [1, 2, 6, and references therein] and also in order to understand the E region electric fields [7, 8, 9]. Since 1998, when the Brazilian So MHz coherent back-scatter became fully operational, such studies have also been conducted in the Brazilian longitude sector [10, 11, 12, 13]. For such studies, a precise determination of the Doppler shift of the irregularities is a crucial requirement. And the curve fitting is presented as an efficient tool to determine the irregularity Doppler shift [1, 5], 16]. The curve fitting as a parameter estimation technique is based on finding the parameters of a well known mathematic equation, trying third work we studied the implications of constraining the parameters of Gaussian curves fitted to power spectra of simulated back-scatter radar signals from Type 1 irregularities. This statistical study aims to quantify the advantages and disadvantages of applying such technique.

THEORY AND METHOD

This work focuses on the study of Type I power spectrum of the back-scattered signals from 3-m EEJ plasma irregularities that should present a sharp peak centered at around 120 Hz corresponding to the radar frequency of 50MHz. The Gaussian covariance model of Zrnic [18] was used to simulate power spectra of 3 m plasma irregularities containing both the characteristics of the Type I and Type 2 instabilities, each spectra having 256 points. Type 2 irregularities containing both the characteristics of the Type I and Type 2 instabilities, each spectra having 256 points. Type 2 irregularities containing both the characteristics of the Type I and Type 2 instabilities, each spectra having 256 points. Type 2 irregularities to the trans thaving the same Doppler frequency f_{L_2} is 80Hz, standard deviation (s₂), manely, 10Hz e 20Hz, respectively. However, each set of Type I spectra was chosen to have different signal-to-noise ratio (SNR): 34B, 6dB and 94B. Thereafter, we have summed each spectrum of the three sets of Type I spectra with one spectrum of the three sets of Type I spectra with one spectrum of the three sets of Type I spectra was added to signals in time domain in order to assure a more realistic variance in the power spectra. In this way, each simulated spectrum was described by the sum of two Gaussians and a noise level, i.e., it was described by one function 5 in relation to the frequency f, given by:

$$S(f)? \frac{P_1}{?_1\sqrt{2?}} \exp \frac{?}{3}? \frac{(f?f_{a1})^2}{2?_1^2}? \frac{P_2}{?_2\sqrt{2?}} \exp \frac{?}{3}? \frac{(f?f_{a2})^2}{?_2\sqrt{2?}}? P_N$$

where P_1 and P_2 are, respectively, the areas of the Gaussians representing Type 1 and Type 2 spectra, P_N is the noise power, and the other parameters have been described above. To determine the 7 parameters of each spectrum, $a = \{d_n, f_{n-2}, s_n, s_n, P_n, P_n\}$, the Maximum Likelihood Estimate (MLE) was used for nonlinear fitting. This nethod is based on finding the parameters a that maximize the probability function P(y_1, ..., y_k) of observing the data set $y = \{y_1, ..., y_k\}$. It is also a problem of finding the parameters a that minimize the square sum of residual errors between the data set y and the Gaussians S(h), considering the uncertainty x_1 related to each point y_k . In vise of this, equation (2) below presents our objective function to be minimized. Here N is the number of frequency points, y_1 is the other parameters have been introduced before.

$$?^{2}?? ? ? \frac{N}{2} \frac{!y_{i}?S(f_{i};P_{1},f_{d1},?_{1},P_{2},f_{d2},?_{2},P_{N})!}{2}$$

Constraining the parameters search means to impose boundaries in the space of parameters, which can not be crossed by the method during the search. One way of doing this is by imposing penalties to the objective function when the method assumes unrealistic physical values [19]. We have done this by adding the following function to (2): 2

$$P_j$$
? $\frac{f_j}{h_j(P_1, f_{d1}, P_1, P_2, f_{d2}, P_2, P_N)}$

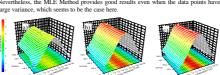
ACKNOWLEDGEMENTS

The author wishes to thank CNPq/MCT for the support to his program through the project nr. 1076162003-3. He also would like to acknowledge the Young Scientist Award offered by the International Union of Radio Science (URSI) providing the financial support to present the work.

unction of its constraining value is also presented. where a_i is the weight of the function and h_i is penalty function for each Gaussian parameter. Such function should be positive in the valid region of search, decrease rapidly as the search approach of the prohibited region, and be negative when the method crosses the boundary. In this way, the search for Gaussian parameters of spectra characteristics of irregularities Type 1 and Type 2 are limited to physically acceptable values. For this study we have used the method described above to simulated 3000 spectra characteristic of Type 1 and Type 2 tEB irregularities, and separated them in three different groups (having 1000 spectra each one) according the SNR, Afterwards, every spectrum was fitted by two Gaussians, constraining *fII* between 100 and 150 Hz, which corresponds to a Doppler velocity between 300 and 450 m/s. Moreover, we have studied the response of the fitting by constraining the parameter with five different weights in the paralison of the *f_{LI}* fitted to the spectra using Gaussians curves with the *a priori f_{LI}* value used to *f_{LI}* fitted to the spectra using Gaussians Type 1 (*s_{LI}*) as the weight of the penalty function: (*P_{LI}*) e 1 spectra. We have also compared the behavior of the variance of the *f_{LI}* and the standard deviation of the Gaussian Type 1 (*S_{LI}*) as the weight of the penalty functions (*a*) and power-to-noise level of the Gaussian Type 1 (S_{LIN}) increase.

RESULTS AND DISCUSSIONS

The distributions of the Doppler frequency of the Gaussian Type 1 (f_{dl}) as it was The distributions of the Doppler frequency of the Gaussian Type I $Q_{\mu l}$) as it was estimated by the MLE Method for different weights (a) in the penalty function is presented in Fig. 1. The results for the first data set, Fig. I-a, shows when spectra Type I were simulated using SNR₁ = 3dB. Fig. I-b shows the distribution for the case when SNR₁ = 6dB and Fig. I-c gives the distribution of f_{Al} versus a_l when SNR₁ = 9dB. In this figure we see the distribution of fId l do not change much as a_l decreased from 10⁴ to 10⁻³. However, some differences can be noted in the distribution of f_{Al} when no penalty functions are applied. It seems the distribution spreads out from the expected frequency of 120Hz when applying constraints. This effect becomes notable when SNR₁ is comparable to SNP. We decrease ther as SNP_m zero fear 2 to 40H db as werehol above; normand the L2012 when applying constraints. Inis erfect becomes notable when SNR₄ is comparable to SNR₂. We also see that as SNR₄ goes from 3 to 9dB the method clearly increased the percentage of spectra fitted with the right f_{jj} . This seems expected, but we should remember the increase in the signal power would increase the variance in the peak of the power spectrum, which in turn increases the uncertainties of the fitting method. Nevertheless, the MLE Method provides good results even when the data points have a large variance, which seems to be the case here.



sus aj for SNR1 equal to (a) 3dB, ation of Doppler frequency type 1 ve

The distributions of the variance of Doppler frequency estimated from the Gaussian Type The distributions of the variance of Doppler frequency estimated from the Gaussian Lype $I(V_{dd})$ associated with the fitting method for different penalty function weights (a) is shown in Fig. 2. Like before, Fig. 2-a shows the results for SNR₁ = 3dB, Fig. 2-b shows the distribution for SNR₁ = 6dB, and Fig. 2-c gives the distribution for 9dB. In all these figures the low values of V_{dd} (<) increase with applying constraints, which would lead to the interpretation that I_{dd} is better estimated. However, when applying constraints we have imposed penalties to the objective function by adding (3) with a_j in the numerator. Tooc V_{dd} is derived from the inverse of the gradient of the objective function, the higher a_j the lower $V_{dd'}$. Thereafter, the above assumption based on Fig. 2 that I_{dd} is better estimated when using constraints should not be considering conclusive. Moreover, Fig. 1 stimated when using constraints should not be considering conclusive. Moreover, shows that distribution of f_{dl} spreads out as a_j differs from zero. A tentative expla for the increase shown in Fig. 2 is thought in terms of fitting sharp peaks. er, Fig. 1

Fig. 2. Distribution of variance of Doppler frequency type 1 versus a_j for SNR₁ equal to (a) 3dB, (b) 6dB and (c)

The distributions of the standard deviation (s_i) estimated for the Gaussian curve Type 1 for different penalty function weights (a) and SNR, are presented in Fig.3-a, Fig. 3-b and Fig. 3-c, respectively to 3dB, 6dB and 9dB. Here we see the distribution of the s_i gets sharp as SNR_i increases from 3 to 9dB. Each individual graph shows the occurrence of s_i close to 20 Hz do not change much as a_i decreased from 10⁶ to 10³. But some difference is observed in the distribution of s_i without constraints. The distribution spreads in the base and decreases in amplitude. It indicates that the precision in estimating s_i increases when s_i difference near

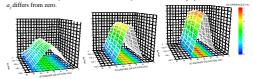


Fig. 3. Distribution of Standard De on type 1 in function of aj for SNR1 equal to (a) 3dB, (b) 6dB and (c) 9dB

However, as shown in Fig. 4 below, the good precision in estimating s_i is balanced by the reduction in the number of fitted spectra. This figure shows the percentage of fitted spectra in function d_i for SNR, equal to (back) 3dR, (navy) 6dB and (blue) 9dB. Anyway, the increases in the precision in estimating s_i seem to be the best result of Anyway, the increa applying constraints

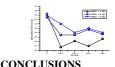


Fig. 4. Percentage of fittee spectra in function of *aj* for SNR1 equal to (black) 3dB, (navy) 6dB and (blue) 0.00

We have studied the effect of constraining the range of Gaussian curves parameters during curve fitting methods applied to simulated power spectra having signatures of the presence of the well known Type I and Type 2 plasma irregularities from the equatorial electroit. The main conclusion is that the application of constraints could compromise the estimative of the Doppler frequency f_a, increasing the uncertainty around the "right" value. On the other hand, the standard deviation of the Gaussian Type I seems to be better fitted, as was presented in the Fig. 2. The results have shown the application of constraints apparently increases the variance of the curve, because the distributions of frequency had spread out when a, differed from zero. Maybe the results can be consequences of using a non-adaptable a. Other alternative is increase the maximum number of iterations before accept the non-convergence. Despite these conclusions seem to be simple, they hwe direct impact into the data analysis from coherent back-scatter radars echoes. An application of constraints without consider what we have present here would not compromise stoitously any result based on the Doppler velocity of Type I i regularities. But i will certainly lead to a higher error and maybe to error propagations into the determination of dependent quantities like electric field inferred from the Doppler velocities from such irregularities. Finally, we should mention that the choice for constraining the parameters should be related to the objective of the research and its can not be generalized for all the cases. EFERENCES

REFERENCES

[10] Ashin, M., A. Donzelnić, C. M., Sohrad, H. H. A., Boltaka, L. S., Morellkeirshan, P. and de Parlas, E. R., 2002. Equatorial charcing integrations: i 8. (c. C. M. Abda, M. A. and Sebral, J. H. A., 2004, VHF radar studies of the equatorial electrojet 3-m irregularities over Sko Lutic day-to-day variabilities at conditions: Journal of Atmospheric and Schu-Temporturi Hysics, Vol. 46, nr.7, p.1003-1013. (c. Q.L. 2004; Enduced in electrodimitaric to isorofore equatorial diratence perisols de misima arisidade solar (1999-2002); Sko Jood dos Campos, Invita. Bandler, C.M., 2005, Urano, & A., Shannan, S.M., Shanna, S.R., Shanna, Shan

